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The cost of communication in economic organization: II 
 

Hajime Oniki 

 

 1 Introduction 

 

Professor Kenneth Arrow, in his presidential address at the 1973 annual meeting of the American 

Economic Association, discussed problems in the economics of uncertainty and information.  In 

dealing with the efficiency of the price system, he stated: 

 

In equilibrium, at least, the [market] system as a whole gives the impression of great 

economy in the handling of information, presumably because transmission of prices is in 

some significant sense much cheaper than transmission of the whole set of production 

possibilities and utility functions …  But what was left obscure is a more definite measure 

of information and its costs, in terms of which it would be possible to assert the superiority 

of the price system over a centralized alternative … 

if we are going to take informational economy seriously, we have to add to our usual 

economic calculations an appropriate measure of the costs of information gathering and 

transmission.  (Arrow 1974a, pp.  4-5) 

 

 This chapter responds partly to the point raised by Professor Arrow; this is an attempt to find a 

measure of the cost of internal communication in economic systems. 

 For the convenience of the reader, we shall first give a brief and informal explanation of this work.  

We consider the problem of comparing two alternative economic systems, the centralized system and 

the (decentralized) market mechanism.  In this work, each system is composed of a center and agents, 

the latter being interpreted to be productive firms.  In the centralized system, the center may be 

considered as the planning board of a socialist state, whereas in the market mechanism it is an 

auctioneer, who runs the system by executing the law of supply and demand. 

 Our strategy is to have each system “solve” an allocation problem and to calculate the cost of 

internal communication arising from this.  For simplicity, we choose a textbook problem of cost 

minimization. 

 Suppose that each agent is given a marginal cost schedule to produce an output commodity and 

that the total output is required to be at a given level.  In the centralized economy, this level may be an 

output target set by the socialist government.  In the market system, it may represent a level of inelastic 

demand for the output commodity.  We know, of course, that optimality (or equilibrium) requires 

equality of marginal costs among all agents. 

 One can observe that the optimal level of output for each agent is determined from the data of this 
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allocation problem, that is, from the marginal cost schedules and the required level of total output.  In 

other words, the optimal level is a function of the given data; the former may be computed once the 

latter is given.  We can state, in more general terms, that desired decisions are obtained from data 

describing a given environment.  In this work, we regard each of the two systems, the centralized 

economy and the market mechanism, as a computer,” that is, an information processing system that 

can generate what is desired from what is given; this work deals with the cost of running such a 

computer. 

 From our standpoint, the two systems differ only in the way they handle economic data; otherwise, 

they are treated equally.  In particular, the data given to each system at the beginning of computation 

are identical.  Specifically, we assume that initially, before any computation starts, each agent knows 

his marginal cost schedule and the center knows the required level of total output.  This condition, 

common to the two systems as remarked above, is called the initial dispersion of information.  Further, 

we require that the computation output from each system be identical; the solution to the given 

allocation problem obtained by the centralized system must be the same as that obtained by the market 

mechanism, although the internal algorithm in each system may not.  Thus, our work is like 

comparing two (real) computer systems that produce an identical line printer output from an identical 

card deck. 

 Computation of desired allocation proceeds as explained below.  In the centralized system, each 

agent transmits to the center the entire marginal cost schedule, and the center, with all the data at hand, 

calculates the optimal allocation by itself.  The decentralized system, on the other hand, simulates a 

competitive market.  The center announces a (tentative) price of the output commodity, and each agent 

tells the center the quantity of output to be supplied at this price.  The center then calculates the total 

excess demand for the output commodity and revises the price according to the law of supply and 

demand.  The process is continued until an optimal allocation is obtained. 

 One sees that various kinds of informational activities need to be performed even in the simple 

process described above; they include observing, gathering, storing, sending, and transforming 

economic data.  (See, e.g., Marschak 1968 for a comprehensive study of informational activities in 

economic systems.) In this work, however, we deal with internal communication only; the reason for 

this is that it is the easiest to investigate. 

 In order to calculate the cost of communication, we must choose a measurement unit.  Our strategy 

for doing this is best explained by comparing communication, which is to move information from one 

place to another, to transportation, which is to move, say, passengers from one place to another.  The 

amount of passenger transportation is measured by the unit of, say, passenger-kilometer, and the cost 

of transportation depends on this and the choice of actual means of transportation, which may be 

characterized by mode (air, auto), route, speed, and so on.  For any given means, the greater the 

amount of transportation expressed by the unit of passenger-kilometer, the higher the cost.  Thus, we 

may state that the amount of transportation is a measure of transportation cost independent of its 

means. 
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 In this work, we seek to formulate a model in terms of which the amount of information to be 

transmitted may be obtained independent of the means of information transmission.  In 

communication, we have no common sense unit for measuring information like the unit of 

passenger-kilometer in transportation.  However, information theory fills the gap; in fact, as explained 

in Section A in the appendix, it provides a universal unit of measuring information, which is 

independent of the actual content of information and of the channel through which information is 

transmitted (see also Hess 1983, Chapter 11). 

 In information theory, “having a piece of information” means that a particular object is designated 

in a collection of possible objects.  For example, the statement “the air temperature is now increasing” 

may mean that the object increase has been selected from the collection of three objects, increase, 

decrease, and unchanged.  It is essential that this set be specified completely beforehand and its 

meaning be understood both by the sender and the receiver of information. 

Roughly speaking, the amount of information is measured by the degree of difficulty to identify an 

object in the set of possible objects.  It depends on the number of objects contained in the set and the 

probability distribution according to which the object in the set takes place.  It does not depend on the 

interpretation attached to them.  As shown in Section A (Appendix), the amount of information is 

expressed by the expected number of letters (bits) needed to code the objects, which can be 

approximated by the entropy of the probability distribution.1 

 In Section 2 of this chapter, we use the entropy function to calculate the amount of information to 

be transmitted in the centralized system and the price mechanism when the optimal allocation is 

computed.  In fact, the author’s earlier work (1974) did this by using an elementary combinatorial 

method.  It was found that, in terms of the cost of communication, the price mechanism was more 

economical than the centralization of information if the required accuracy of resource allocation was 

not very low; the ratio of the communication cost of the centralized system to that of the price 

mechanism increases as the required accuracy tends to be high. 

 This contribution deals with the same problem as summarized above.  We shall, however, present 

an improved formulation of the problem so that the results to be shown will be more accurate and the 

analysis needed to get them will be much simpler than in the earlier work. 

 The main difference between the earlier and the present works lies in their formulation.  In the 

earlier work, all the data of the model were discretized, and the entropy function was calculated by 

combinatorial enumeration.  This made the model elementary and easy to understand, but it also made 

the calculation very cumbersome.  In this essay, we shall construct our model by using analytical tools.  

This will simplify our task greatly, but there is a price for this; the distance between the reality and the 

model is greater in this work than in the earlier work. 

 There seems to exist an intrinsic difficulty in formulating models to measure informational costs.  

                                                  
1 The entropy function is also called the Shannon measure (Shannon 1948), which is a “direct” measure of information in the sense 
that it focuses on the actual transmission of information and uses bits to measure it.  As a measure for comparing resource allocation 
systems, it is in contrast with the one using the “size” of a space from which information arises (like the dimension of a message 
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As we know, analytical models are simpler than combinatorial ones.  For example, differential 

equations are easier to solve than difference equations, and normal distributions have nice properties 

not shared by binomials.  However, to employ analytical construction, we have to introduce a 

continuum like the real variables, but this is not directly compatible with the objective of calculating 

informational costs.  The reason is that the cost of identifying an object in a continuous set is infinite 

(e.g., a real number can only be represented by an infinite decimal sequence).  This means that if we 

use analytical tools with the entropy function to express the informational cost, we must introduce “ap-

proximation” into our model and somehow bridge the gap between the continuous and the discrete 

spheres.  In this chapter, this is done by Proposition A6 (Appendix). 

 

2 Complete centralization and the price mechanism 

 

2.1 Assumptions common to the two systems 

 

In this section, we construct a model to compare the cost of internal communication in the centralized 

system and in the price mechanism.  First, let us present assumptions that are common to both of the 

two systems. 

 We consider a simple problem of resource allocation to be solved by a center” and agents 

(producers), each being indexed by i (i = 1, ..., , I).  It is assumed that there is only one commodity, to 

be denoted by x.  The price of the commodity will be expressed by t.  Let T =｛t | 0 < t < + ∞｝= (0,+

∞) and X =｛x | 0 < x < + ∞｝= (0, + ∞) be the price and the quantity spaces, respectively. 

 The environment to be given to agent i is a supply function (an inverse marginal cost schedule) gi 

(t).  More precisely, define 

 

G =｛g:T → X | g(0) = 0, g is nondecreasing and left continuous｝ 

 

to be the set of supply functions, G being common to all agents. 

It is assumed that the supply function arises from G subject to what is called the first-passage time 

distribution of Brownian motions, of which a brief summary is given in Section B (Appendix).  In this 

chapter, we consider the case in which this distribution is identical and independent over all agents.  

Given gi  ∈ G, let gi (t) denote the quantity supplied at price t  ∈ T.  By Proposition B3(i) (Appendix), 

the random variable gi (t) has the density function f(・, t) of the one-sided stable distribution with para-

meter t, which is also explained in Section B (Appendix).  Let z > 0 be a constant denoting the 

aggregate demand for the commodity.  The objective of the center and the agents is to find a t* ∈ T 

such that the equilibrium condition Σgi (t*) = z be satisfied at least approximately. 

 We shall assume the following information structure.  At the beginning of each period, a state of 

                                                                                                                                                  
space) (see Hurwicz 1977; Mount and Reiter 1974). 
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the world (gl,..., gl, z) obtains.  Agent i knows gi (and gi only), whereas the center knows z (and z only).  

The equilibrium price t* is theoretically determined once the state of the world is given.  As explained 

in Section 1, however, our problem here is to consider adjustment processes (algorithms) that specify 

the detailed steps leading from the given data describing the state of the world to the equilibrium price 

and the equilibrium level of output for each agent.  In any such process, information about the state of 

the world, that is, information about (gl,..., gl, z), must be exchanged between the agents and the center. 

 The cost of communication to execute a process may be calculated by examining how information 

is transmitted at each step of the process.  As summarized in Section A (Appendix), the cost of 

communication is determined by the amount of information transmitted, which may be expressed by 

the expected number of letters needed to code the information to be transmitted. 

 In order to calculate the amount of information transmitted, we need to impose further 

assumptions on our model.  First, we specify a degree of accuracy required for optimization.  Let Δt > 

0 and Δx  > 0 denote, respectively, the length of an interval on the price axis and the length of an 

interval on the quantity axis.  In the following, when we consider decision making with approximation, 

we shall work only with integer prices specified by the interval Δt, (i.e., multiples of Δt,); a price that 

is not equal to a multiple of Δt, will be represented by an integer nearest to it.  On the quantity axis, we 

shall work only with intervals of length Δx (i.e., intervals with endpoints that are equal to multiples of 

Δx); any quantity of output commodity will be represented by an interval containing it.  (We assume 

that “ties” are resolved in some way.  It will be seen later that the way they are done does not matter.) 

When we consider a model in terms of integer prices and quantity intervals, we say that it is in the 

approximation mode, and when we consider a model without approximation, we say that it is in the 

theoretical mode.  Decision making in the approximation mode accompanies allocation errors.  The 

length of the intervals Δt and Δx determines the degree of accuracy for optimization, but it is not 

necessarily equal to the allocation error (the latter will be considered later).  Observe that the cost of in 

formational activities can be considered only in the approximation mode (as long as we use the 

Shannon measure).  We expect that as the accuracy requirements Δt and Δx tend to be small, the 

amount of information transmitted will be increased. 

 Second, we choose a number M ∈ T so large that the probability for the equilibrium price t* to lie 

outside the interval (0, M) may be ignored.  It is assumed that all of the adjustments to be considered 

below are carried out within this interval.  Furthermore, for analytical simplicity, we assume that the 

equations Δt = 2-mM and Δx = 2-nN hold for some positive integers m > 0 and n > 0 and a number N > 

0.  (See Figure 1.) 

 Below, we calculate the cost of communication in the centralized system and that in the price 

mechanism.  That is, we calculate the expected number of letters (bits) to be transmitted between the 

center and the agents for computing the desired allocation to some level of accuracy.  For each of the 

two systems, we explain about the data in the approximation mode to be transmitted between the 

center and the agents, the maximum allocation error that may arise from the adjustment process using 

the data, and the cost of transmitting the data. 
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2.2 The centralized system 

We first deal with the centralized system.  Consider an agent who is given a particular supply function 

g(t).  In order for the center to calculate the equilibrium price in the approximation mode, the center 

needs to obtain the values of the function g(t) at t = rΔt (r = 1, 2,...,2m).  There may be several 

alternative ways to do this.  In this chapter, we assume, for the sake of making our calculation of the 

communication cost simple, that the agent transmits to the center the quantity interval containing the 

increment of the supply function, that is, it sends the data approximating ｛g(rΔt) - g((r - 1) Δt)｝for 

r = 1,2,...,2m successively in this order.  (See Figure 2.) The center, having received these data from 

each agent, obtains information to approximate the aggregate supply curve.  It can then compute the 

optimal solution of the given allocation problem in the approximation mode.  The error arising from 

this depends on the parameters m and n and also on the sample supply functions. 

 The maximum error that arises from the center’s computation of optimum in the approximation 

mode is determined as follows.  Since the agent transmits a quantity interval containing the “true” 

increment of the quantity supplied at an integer price, the maximum error arising from this is equal to 

the length of this interval, that is, Δx.  In the worst case, this error is accumulated for each increment of 

the supply function and for each agent; accordingly, the maximum error in estimating the aggregate 

quantity supplied is equal to 2 mΔx I, where 2m is the number of the integer prices and I is the number 

of the agents.  Suppose that we can neglect the probability that the equilibrium price t*  lies outside the 

interval (0, M) and, in addition, the probability that the aggregate quantity supplied at t = M exceeds N.  

Then we can state that if N = 2 nΔx is much greater than the maximum error 2 mΔx I, that is, if n is 

much greater than m log2 I, the maximum error relative to the aggregate quantity supplied is small.  

Figures 3(a)-(c) illustrate such a case, whereas Figures 4(a)-(c) illustrate a case in which the relative 

error is not small.  The reader who is not quite satisfied with this result is reminded that the primary 

objective of this work is to construct a model for comparing economic systems with respect to the cost 

of communication in a simple setting, not to construct a model in which the error arising from 

adjustments in the approximation mode is expressed in a simple form.2 

Let us now turn to calculating the cost of transmitting the data approximating ｛g(rΔt) - g((r - 1)

Δt)｝, for r = 1,2, ...,2m, from the agent to the center.  Proposition B3(ii) (Appendix) states that these 

data are distributed independently and each of them has the density function f(.,Δt) of the one-sided 

stable distribution with parameterΔt.  In other words, the agent is given 2m random variables 

distributed independently and identically.  (See Figure 2.) 

Consider one of these random variables.  Since the agent reports to the center a quantity interval 

of length Δx to which the true value of the random variable belongs, the set of messages from which 

the agent chooses is S=｛S1, S2,...｝, where Su  denotes the interval ((u - 1) Δx, uΔx).  It is now evident 

                                                  
2 An obvious alternative way for the agent to transmit the supply function to the center in the approximation mode is to send g(rΔ
t), r = 1,2,…2m, i.e., to send the values of the quantity supplied at the integer prices rather than their increments.  With this assumption, 
the maximum allocation error would be expressed in a simpler term, but the communication cost would be obtained in a more 
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that we can approximate pu =  Prob｛su｝by f(uΔx,Δt)Δx. 

Proposition A7 (Appendix) allows us to state that the amount of information needed to send a message 

from the message set S defined above is approximately equal to ｛H(f(.,Δt)) - logΔx｝, where H(・) 

is the entropy function defined by Definition A2 (Appendix).  Since there are 2m such random 

variables and the number of the agents is I, we may conclude that the communication cost in the 

centralized system, say C1, is expressed as 

 

 C1=I × 2m｛H(f(.,Δt)) - logΔx｝. (1) 

 

By making use of Proposition B2 (Appendix), we obtain3 

 

 C1= I × 2m｛( - 2m + n)log2 + (21ogM - logN) + K｝, (2) 

 

where the constant K > 0 is given in Proposition B2. 

For simplicity, let us assume that the parameters M, N, m, and n are chosen in such a way that M2=N 

and 2m = n.4   We then get 

 

       C1 = I×2m K                                                                                                    (3) 

 

2.3 The price mechanism 

 

Next, we consider the price mechanism.  The center here is an auctioneer and follows the ordinary 

scheme of price adjustments (i.e., the law of supply and demand) in order to get to the equilibrium 

price.  In the theoretical mode, the center announces a tentative price, gets the quantity supplied at that 

price from each agent, and calculates the excess demand.  If it is positive, the center will raise the price, 

whereas if the excess demand is negative, the tentative price will be lowered.  In any case, at the 

following step, the center announces a revised price to the agents and repeats the procedure described 

above.  The adjustment will be terminated when the excess demand becomes zero. 

 In our model, the adjustment is considered in the approximation mode so that we work only with 

integer prices and quantity intervals.  We assume that, on the price axis, the center adjusts tentative 

prices in the following way: Let tj denote the integer price chosen by the center at the jth step of the 

                                                                                                                                                  
complicated formula, than with the assumption adopted in the text. 
3 C1 = I × 2m{2 log Δt + K－logΔx} 

   = I × 2m{2 log(2－mM) + K log (2－nN)} 

   = I × 2m{(－2m+n) log 2 + 2 log M－log N+K}.  

 

 
4 Note that this assumption is consistent with the condition (stated on p. 198) for the relative allocation error to be small. 
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adjustment procedure.  We postulate that the initial price is chosen so that tj = 2-1M, and, for each j > 1, 

tj+1 = tj + 2-(j-1)M if the excess demand at is positive and tj+1 = tj - 2
-(j+1)M if the excess demand at tj is 

negative (or zero). 

 Since, in our model, each agent reports the quantity supplied at a given price by specifying a 

quantity interval of length Δx, the center obtains the aggregate quantity supplied in the form of an 

aggregate interval of length IΔx, where I is the number of the agents.  We postulate, for the sake of 

definiteness, that the center calculates the excess demand at each adjustment step by subtracting the 

number equal to the midpoint of this aggregate interval from the number equal to the (given) demand 

for the output commodity. 

 We assume that, in each case, the center performs exactly m adjustment steps.  Since there are 2m 

integer prices, this implies that the center obtains information approximating the position of the 

aggregate supply curve near the equilibrium price to the same degree of accuracy as in the centralized 

system.  The allocation error arising from this procedure, which is performed in the approximation 

mode, depends on the parameters m and n and also on the sample supply functions.5 

 Let us now calculate the cost of communication of this procedure.  For simplicity, we ignore the 

cost attached to the transmission of prices by the center to the agents; we concentrate on the cost 

attached to the transmission of the quantity by an agent to the center.  At the jth step, agent i transmits 

a message designating the interval containing the value gi(tj) of supply function gi.  It is noted that the 

position of the interval containing gi (tj - 2
-jM) in the quantity axis is known both to the center and agent 

i at the jth step, and as stated by Proposition B3(ii) (Appendix), the random variable gi(tj) given gi (tj - 

2-jM) has the probability distribution with the density function f(.,2-jM).  The amount of information 

that agent i has to transmit at the jth step with the accuracy corresponding to the quantity interval Δx is 

therefore equal to ｛H f(.,2-jM)｝ - logΔx｝.  Since this expression is independent of i and there are I 

agents, we may write down the cost of communication in the price system, say C2, as 

                     m    

          C2= I∑｛(H f(.,2-jM)) - logΔx｝, 

                     j=1 

which may be simplified by using Proposition B2 (Appendix) as6 

 

 C2 = Im｛(-m + n-1) log2 + (2logM - logN) + K｝. (5) 

 

If, as in the preceding section, we assume that M2 = N and 2m = n, then we get 

                                                  
5 Since each agent transmits a quantity interval exactly m times, the maximum allocation error for this case is equal to mΔxI.  We 
have assumed that the center revises output prices according to the rule called bisectioning or dichotomization.  This rule does not 
minimize the expected number of adjustment steps needed to reach equilibrium unless the equilibrium price is distributed uniformly.  
Our rule has been chosen here for the sake of simplicity. 
6 C2 = I∑{2 log ( 2－jM) + K－log (2－nN)} 
  = I{2 (log 2)∑(－j) + m(2 log M－log N + n log 2) + K} 
  = I{1/2[－2 (log 2)m(m+1)] + m (2 log M－log N+ n log 2) + K} 
  = Im{(－m + n－1) log 2+ (2 log M－log N) + K 
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 C2 = Im｛(m-1) log2 + K｝. (6) 

 

 

2.4 Summary 

 

To summarize, we state that 

 

 C1/C2 = O(2 m/m2). (7) 

 

In other words, the cost of communication in the centralized system grows linearly in the number of 

approximation intervals and the cost in the price mechanism is proportional to the square of the 

logarithm of the number. 

 It is noted that the results obtained above basically reflect the difference in the number of 

messages transmitted for adjustments in the two systems.  As seen easily, in the centralized system, the 

agent needs to send to the center 2m messages to report the quantity supplied at prices t=rΔt 

(r=1,...,2m).  On the other hand, in the market mechanism, the agent needs to send only m messages, 

since the center revises tentative prices exactly m times.7  Our estimation of the relative cost of 

communication in the two systems [i.e., equation (7)] could be obtained by counting the number of 

messages transmitted in each system (i.e., without relying on information theory).  This is because we 

have used the supply function as the objective of communication both for the centralized system and 

for the market mechanism.  If we formulated a model of centralization in which the production 

function, not the supply function, were transmitted, then we would not be able to compare 

communication costs merely by counting the number of messages. 

 

 

3 Conclusion 

 

From what is stated at the end of the preceding section, the reader may observe that the main reason 

that, in our model, the once-and-for-all centralization of information is shown to be less efficient than 

the price mechanism is that the former “wastes” a great deal of information.  To solve the allocation 

problem, some, but not all, of the information about the environment of each agent is needed.  Which 

portion of the information about the environment of an agent is relevant to solve the problem depends 

                                                  
7 In the text, the market mechanism is formulated in such a way that at each step of adjustments the agent sends a message 
designating the quantity supplied at a price selected according to the bisectioning rule, whereas in the centralized system no 
bisectioning rule is used; prices are scanned linearly from left to right.  If in the centralized system the agent sends messages by 
selecting prices according to the bisectioning rule, then the cost of communication will be equal to 
                       m 

          C’1 = ∑ {H(f(・,2-jM) - log Δx)・2j 
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on the environment of every other agent; it cannot be determined before the problem is actually solved.  

Thus, if the information about the environment has to be sent to the center before any computation 

begins there, each agent must send all information about the environment (to the required degree of 

accuracy); for, otherwise, the center might not be able to compute the optimum because of a lack of 

relevant information.  The advantage of the price mechanism over the centralization lies in the fact that 

at each step of successive adjustments it allows the agent to send only that information relevant to 

solve the problem at that step, thus making it possible to avoid sending information that will never be 

used. 

 The conclusion stated above has been obtained from our model, which is constructed on a 

number of simplifying assumptions.  Whether it holds in a more general setting is, of course, an open 

question.  If, however, we limit our consideration to the case in which the centralized system “simu-

lates” a decentralized algorithm (as in the Lange—Lerner socialist state performing a marketlike 

adjustment procedure within a computer), then we can assert that the centralization of information is 

inferior to the decentralized adjustment with respect to the cost of communication for the reason that 

the former wastes information the latter does not. 

This advantage of decentralizing information has long been recognized by Lange and Taylor (1938), 

Hayek (1945), and others in relation to the classical controversy on socialist planning and more 

recently by Hurwicz (1960, 1971, 1973, 1977), Marschak and Radner (1972), Marschak (1959), 

Mount and Reiter (1974), Reiter (1977), and others in relation to the problem of designing economic 

mechanisms satisfying certain performance requirements.  The results presented in Section 2 may be 

regarded as a quantitative confirmation, in terms of the entropy measure of information, of the 

advantage of decentralizing information for a simple problem of resource allocation.8 

A question that arises naturally from the foregoing discussion is whether it is possible to explain the 

existence of centralized information in the real world.  A large amount of information is collected and 

compiled by economic (and other) organizations (e.g., by modern corporations and government 

institutions) to facilitate their operations.  Centralized information in such organizations is stored 

partly in human beings and partly in various informational devices.  One may think of libraries, 

dictionaries, and data bases as examples of nonhuman means to store centralized information.  It is a 

fact that usually only a fraction of such centralized information is used; the remaining part will never 

be used and will thus be wasted.  There must be factors that make the centralization of information so 

economical that the disadvantage of wasting information may be offset. 

Arrow (1974a, b) has pointed out that one of the major advantages of centralizing information lies in 

the economies of scale in “handling” information.  For example, a particular piece of printed 

information, once produced, may be copied with a negligible cost and may be distributed widely.  It is 

                                                  
8 We point out that this essay may be regarded as a formulation of what Simon (1978) called bounded rationality in resource 
allocation.  In particular, decision making in the approximation mode introduced in this contribution is a way to express the fact that 
in reality optimization cannot be carried out with perfect accuracy because of the presence of adjustment costs.  Further, our work to 
compare two economic systems with respect to the cost of communication may be considered as a step toward formulating Simon’s 
procedural rationality. 
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well known that this property of information likely prevents it from being traded as an ordinary 

commodity since it is difficult to protect the ownership of information, but it seems less well known 

that the same property may explain the existence of systems in which information is centralized. 

To summarize, we state that centralization of information brings about both advantages and 

disadvantages.  The former comes from scale economies of information handling and the latter from 

the waste of centralized information.  Thus, an optimal degree of centralization (or decentralization) 

may be obtained by weighing these two factors.  Whether it is possible to formulate a model explaining 

this point is an open question. 

 Appendix 

A Theorems from information theory 

 

Here we assemble from information theory definitions and theorems used in the previous sections. 

We first define the set of messages (possible objects) and the set of letters (symbols).  Let S = ｛S1, 

S2,..｝be a countable set, of elements S1 (i = 1, 2,...), denoting the collection of messages to be 

transmitted.  It is assumed that the message S1 occurs with probability p1, where p10, ∑p1 = 1, and P 

= (p1,p2,...).  Let A = ｛a1L,..., a L｝ be a finite set, denoting the collection of letters (alphabet) to be used 

for coding messages, where the positive integer L denotes the number of letters.  Given a positive 

integer K > 0, let b1 b2k...bk = (b1,.., bk) be a sequence of K elements of A, where bk. ∈ A (k = 1,..., K).  

Let A+ be the set of all finite sequences of elements of A: 

 

       A+ = ｛b1,.., bk : K ∈ N, bk ∈ A(k = 1,..., K)｝, 

 

where N is the set of positive integers. 

 

 

Definition Al.  A coding h of the messages S by alphabet A is a one-to-one function h: S→A+ from S 

into A+: 

 

S → h(s) = b1...bk. 

 

The value h(s) is the code of s, and the length |h(s)| of code h(s)=b1...bk is the number K of letters 

composing the code.  The average length |h| of coding h of S is given by the weighted sum of all codes: 

 

| h | = ∑Pi|h(si) |. 

 

 

Definition A2.  The entropy of a probability distribution P = (p1,p2,...) is 
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        H(P) = -∑Pi logPi. 

 

Theorem A3 (Shannon 1948; Huffman 1952). 

 

        H(P)  inf | h | < H(P) + 1, 

 

where the infimum is taken over all codings and the base of the logarithm in the entropy function is 

equal to L, the number of letters available for coding. 

 

Given a positive integer J>0, let TJ = S × S × ... × S (J times) be the J-fold Cartesian product of S.  

To each element t = (t1,..., tJ) T1, t1 ∈ S (j = 1,...,J), assign the product probability q = q(t) = q1 ...qJ so 

that qJ = pi if and only if tj = si (j=1,...,J).  Let hJ : TJ → A+ be a coding of the messages TJ by A. 

 

Theorem A4 (Shannon 1948). 

 

 

inf | hJ | → H (P)  as J → + ∞, 

 

where the infimurn is taken over all codings of TJ by A, and the base of 

the logarithm in the entropy function is equal to L. 

Remark A5:  The two theorems stated above suggest that the expected number of letters needed to send 

a message arising from the set S according to a given probability distribution P is approximated by the 

entropy H(P) of P.  If a message is to be coded each time it arises, the average length of a code is equal 

to a number between H(P) and H(P) + 1.  If one can code a sequence of messages, then the average 

length of a code per message can be made arbitrarily close to H(P).  (Note, however, that the cost and 

the delay of coding or decoding is not considered in this essay.) 

 

Messages are always transmitted through a channel using some coding.  If the channel uses coding 

from a finite set A (e.g., binary coding using bits 0 and 1; in this case L = 2), H(P) measures the average 

length of letters used to transmit a message arising from S.  Note that the entropy is invariant in the 

number of letters L up to multiplication by a positive constant. 

The capacity of a channel is defined by the number of letters that it can transmit per unit of time.  

Therefore, if the capacity is denoted by C, then the time needed to transmit information in the amount 

H(P) is approximately equal to H(P)/C.  Since the actual means of transmitting infortion is determined 

by the choice of a channel, we may conclude that the entropy is a measure of communication cost 

independent of its means. 

Furthermore, it is known that what is stated above holds for wider classes of channels: channels using 

a finite set of letters but with erroneous transmission (noisy channels), channels using “Continuous 
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means” like electric or radio waves, and so on.  For example, a noisy channel transmits, say, bits with 

possible errors: 0 as 1 or 1 as 0.  If the probability law governing errors in transmission is known, then 

it is possible to define the capacity from that probability law only, so that the relation among the 

capacity, the amount of information, and the transmission time is exactly the same as in noiseless 

channels.  Hence, we may state that the entropy is a measure of communication costs for a very wide 

class of channels. 

 

Definition A6.  Let f: R→ R+ be a probability density function defined on the reals R, where R+ 

denotes the nonnegative reals.  The entropy H(f) of f is 

 H(f) =-∫Rf(s)log f(x) dx. 

 

 

Proposition A7.  Let f: R → R+ be a probability density function and let a positive number Δ > 0 be 

given.  Let 

 

                            (i+1)Δ 

  Pi= ∫     f(x)dx, I =…, -1, 0, 1, 2, …, 

                  iΔ  

          P = (…, p-1, p0, p1, p2…) 

 

Then  

 

  H(P) + logΔ → H(f),   asΔ → 0. 

 

 

[That is, H(P) may be approximated by H(f) - logΔ if Δ is small.  Note that H(f) is 

independent of Δ; P is called a quantization of f with the interval length Δ.] 

 

Proof: Let xi satisfy iΔ ≦ xi≦ (i+1) Δ and pi = f(xi)•Δ.  (We know from the mean value theorem that 

such xi always exists.) We have 

 

 

   H(P) = －Σf(xi)・Δ・log [f(xi) ・Δ] 

                                                             (i+1)Δ 

                = －Σ[logf(xi)+logΔ] ・∫iΔ   f(x)dx 

                  ∞ 

         = －∫－∞ log[f(v(x))]f(x)dx-logΔ 
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where v(x) = xi if and only if iΔ ≦ x ＜ (i+1) Δ.  Since v(x) → x as Δ → 0, we have H(P)  → H(f)

－ logΔ asΔ → 0. 

 

B The one-sided stable distribution and the first-passage time distribution of  

 Brownian motions 

 

Given a positive number t >0, let f: R→R+  be defined by 

                

                         (2π) －1/2tx－3/2exp( － t2/2x),       if x ≦ 0.  

f(x,t) =   0,                                                   if x ≦ 0. 

 

The function f(・, t) is the density of the one-sided stable probability distribution with parameter t. 

 

Proposition B1 (Feller 1971, pp.  52, 173-5). 

 

              y 

     (i) ∫0  f (x, t) f (y－x, s) dx = f (y, t + s), 

 

where t >0, s> 0, and y >0.  That is, if X1 and X2 are independent random variables with density 

functions f (・, t) and f(・, s), respectively, then Y = X1 + X2 has the density function f(・, t + s). 

 

       (ii) Let Xi (i = 1,…, I) be independent random variables with the common density function f 

(・, t), where t >0.  Let I >0 be a positive integer.  Then the random variable Y =  ∑I
i=1Xi   has the den-

sity function f (・, I1/2t). 

 

       (iii) Let X be a random variable with the density function f(・, t), where t  > 0.  Let I  > 0 be a 

positive number.  Then the random variable Y = IX has the density function  f (・, I1/2t). 

 

Proposition B2 

 

H(f(・,t)) = 2 log t + K, 

 

where 

                                                 1 

  K = －log2 +  2[logπ+3Γ′(1/2)π－1/2 +1]   =3.3245,                  

     

  and Γ′(1/2) is the derivative of the gamma function Γ(・) at 1/2. 
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Proof : Let f(x, t) = ax－3/2e－b/x, where a = t/√2π and b = 1/2 t2.  

                    ∞ 

 H(f) =∫0  f(x,t) log f(x,t) dx 

                              ∞ 

     = －log a + a∫0  ({3/2 log x + bx －1}x－3/2 e－b/x)dx 

                           3a           ∞ 

     = －log a +  2√b∫0 (log b・y－1/2・e－ y － log y・y－1/2・e－y)dy 

                   ∞ 

     + ab∫0  b－3/2y1/2 e －y  dy (put y = b/x) 

                            3a      

     = －log a +  2√b  [log b・Γ(1/2) －πΓ′(1/2)] + abb－3/2Γ(3/2) 

                                             3a      

     = －log t + log√2π+ 2√π  (2 log t－log 2)√π－Γ′(1/2)  +1/2 

     

      = 2 log t +K, 

 

where Γ(・) is the gamma function, and 

  

                              

                                                                                    3 

   K = 1/2 (1－2 log 2 + logπ－ √π Γ′1/2) = 3.32448, 

           Using Γ′(1/2) = 3.480226, which is computed numerically. 

 

 

Let T = X =R+ = (0, +∞) be the set of positive reals.  Let G be the set of left continuous nondecreasing 

functions g: T →+ X from T into X such that g(0) = 0.  Let F (x, t) be the (cumulative) distribution 

function of the one-sided stable distribution with the density function f(x ,t). 

 

Proposition B3 (Karlin 1966, pp.  276-80).  There exists a probability distribution over G satisfying 

the following properties: 

 

(i)  For any t ＞ 0, Prob {g(t) ≦ y = F(y, t), y ＞ 0. 

 

(ii) For any t ＞ s ＞ 0, the random variable g(t) －g(s) is independent of g(r)  

    (0 ＜ r ≦ s).  Furthermore, 

 

Prob {g(t) －g(s) ≦ y|g(s)} = F (y, t－s). 
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Remark:  The distribution over G introduced in the preceding proposition is called the first’ -passage 

time distribution (the FPT distribution) of Brownian motions (or the inverse-Gaussian process), since 

the random variable g(t) is the time that the standard Brownian motion passes the given point t＞0 for 

the first time.  It is a stochastic process whose sample function is monotone and has finite-dimensional 

density functions in a closed form.  In this chapter, we have exploited the fact that the entropy function 

of this distribution has a simple form, as shown in Proposition B3, as well as properties similar to those 

of Brownian motions, as shown in Proposition B1. 
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