Designing a Mechanism for Reallocating Spectrum as a Resource with Vested Right, Sunk Cost, and Externalities

ITS Montreal 2008 (25 June 2008)

Hajime Oniki

Osaka-Gakuin University, JAPAN

I. Introduction

A. Objective of this paper

design and analyze an economic mechanism of spectrum trade for efficient use extended market mechanism (EMM)

B. Strategy for the work

two-step designing

- (1) to design an "ideal" system from scratch
- (2) to design transition process from current state to ideal system

C. Properties of the ideal system

- (1) a process of stepwise reallocation of spectrum
- (2) each step Pareto-improves spectrum allocation (no user shall be hurt)

II. Spectrum as an economic resource

A. What is spectrum?

a space resource with limited capacity
no depletion, no depreciation
can be used in exclusive or shared mode
externalities, positive and negative
technological progress increases efficiency

B. Division of spectrum into bands/blocks

band: a segment of one-dimensional frequency space (Fig. 1)

block: (of the terrestrial spectrum) (Fig. 2)

a subset of three-dimensional space composed by the frequency space and the surface of the land (Fig. 3)

C. Incumbent users of spectrum blocks

```
obtain returns from using block(s)
investment made in the past
sunk cost
cost of holding block(s)
no physical cost
there may be institutional cost
ex.: spectrum usage fee
local monopoly
```

D. Potential users of spectrum blocks

```
may form a plan for using block(s)
usage plan
returns forecast
may offer demand price for block(s)
ex.: through auction
```

E. Pareto-improving reallocation of block(s) (1)

```
For block(s) being reallocated,
(returns from the current use)
< (returns from a potential use)
```

F. Pareto-improving reallocation of block(s) (2)

```
For both incumbent and new users,

(returns before reallocation)

≤(returns after reallocation)
```

G. Ordinary market mechanism (MM) for reallocation

Offer by potential users:

may be done with combinations of blocks considering (positive) externalities

Response by incumbent:

will execute power of local monopoly strategic use of (positive) externalities may quote an extremely high price for yielding a block

MM will not function for spectrum reallocation

H. Reasons that MM does not function for spectrum reallocation

- (1) conditions for MM to function effectively:
 - a. perfect information
 - b. competition with both demand and supply
 - c. goods to be traded: homogeneous or with perfect substitutes
 - d. no externalities
 - e. individuals have incentive to trade
- (2) with spectrum as an object of trade:
 - a. (perfect information) may be assumed
 - b. (competition) not satisfied; local monopoly with supply
 - c. (perfect substitutes) do not exist; spectrum block is unique areawise and frequencywise
 - d. (externalities) exist, positive and negative
 - e. (incentive of trade) weak with incumbents because of sunk cost and zero holding cost

III. Overview of EMM, proposed

A. Bill of spectrum rights and responsibilities (proposed)

- (1) Spectrum is a property owned by the society collectively.
- (2) Spectrum may be used exclusively by a user for an indefinite period; the right to use spectrum is by no means permanent.

- (3) The user of spectrum shall pay a usage fee to the government.
- (4) The user shall yield the right of using spectrum when requested with a compensation which exceeds the amount specified by the user himself/herself prior to such a request.
- (5) Reallocation of spectrum rights shall be Pareto-improving. Further, if more than one reallocation plans are contemplated, the plan giving the greatest improvement of spectrum use in monetary term shall be adopted.

B. Division of spectrum management (Fig. 4)

(1) government:

specification of bands, blocks technological requirements formation of block structure (groups) (\rightarrow III.C)

(2) EMM:

specifies block users

C. Block structure (Fig. 5)

tree-type (hierarchical) grouping of blocks

a spectrum group is either

a block, or

a collection of blocks, or

a collection of groups.

(may be defined mathematically as a *tree*, a subcategory of *graphs*, where end nodes (leaves) are spectrum blocks)

D. Allocation and reallocation of spectrum to users

to be determined by EMM

users: participate to EMM

incumbents and potential users

government: regulates EMM

does not determine spectrum users

--- this is the objective of the paper

IV. Functioning of EMM, proposed (Fig. 6)

A. Objective

to realize possible Pareto-improving reallocation of spectrum blocks the "speed" of improvement: to be controlled by the government

B. Rights and obligations of incumbents

- (1) Revelation of supply price (c) of each group (block)
 - c: the least amount of compensation for which incumbent agrees to yield the right of using the group
- (2) Payment of spectrum usage fee (R)

R = r C.

- C: the sum of c's declared with top-level groups
- r: (annual) rate of spectrum usage fee to be determined by the government
- (3) Incumbents

may continue using a group if there is no offer > c must yield the block if there is an offer $\ge c$

(4) Determination of c by incumbents:

Incumbents tend to declare

a high c for continuing the use of a group

a low c for saving payment R

tradeoff to incumbents

"holding up" a block or a group may be costly

(5) Who are "incumbents"?

all users of spectrum

private, business, and government users

C. Rights and responsibilities of potential users

- (1) Obtain information of c's and C's
- (2) Make offers by showing demand price (D) for groups (blocks) chosen
- (3) If there is no competing offer,

then potential user obtains spectrum right for paying D.

(4) If there is a competing offer,

then auction will be conducted on such groups
winning potential user obtains spectrum right for paying *D*.

D. Roles of government with EMM (1): spectrum holding fee

(1) determines a fee rate (r):

to control the speed of reallocation

resembles to determination of discount rate by central bank

(2) receives spectrum fees (R)

E. Roles of the government with EMM (2): market auctioneer

(1) conducts auction for each group with D > c

use combinatorial auction (computerized)

bidding rule, stopping rule

determines winning bids so as to maximize the total amount of bid price minus c

(= total surplus)

(2) receives total surplus

(Figs. 7A, 7B)

F. Roles of the government (3): collection and dissemination of information

- (1) c, C, D, auction process, auction results
- (2) the state of spectrum rights:

registration

information disclosure

G. Outcome from EMM:

Pareto-improving reallocations will be realized gradually step by step speed of reallocation is controlled by r

V. Secondary (indirect) users of spectrum with EMM

A. Commons users (Fig. 8):

primary user: a government administrator

secondary users: general users (the public)

C: the sum of all compensations declared by the users

R: may be collected at purchasing a device for using a commons block (payment may be made together with that of insurance fees for breakage)

B. Subscribers to service using spectrum (Fig. 9):

ex.: mobile phone users

wireless internet users

primary user: providers, broadcasters secondary users: subscribers, "users"

C: the sum of compensations declared by the primary and the secondary users

R: may be collected by primary user from secondary users to remit to government

C. Transition to DTV in the presence of EMM

would have been a case of reallocation of commons blocks under EMM

VI. Introduction of reallocation as a forward trading, forward supply price

EMM with timing of reallocation specified

ex.: reallocation x years after the current year

x = 1,3,5 and 10 years

c, C, D, r to be specified for each x.

EMM is applied for each x.

actual reallocation to be done in the year x.

both incumbent and potential users will be benefited.

VII. Preventing speculation with EMM (Figs. 10A, 10B)

speculation is possible on a strategically positioned block wrt externalities regulation:

impose a penalty on a steep increase in C

VIII. Transition from the current system to EMM

gradual transition is recommended no "big bang" set r at a level close to zero initially increase r gradually thereafter decrease the rate for current spectrum fees simultaneously

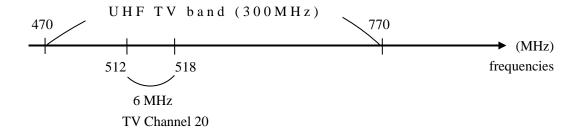


Figure 1: Examples of Spectrum Band in the Frequencies Axis

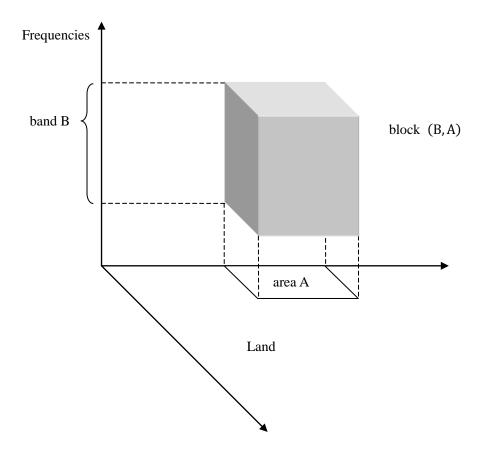


Figure 2: Example of Spectrum Block(B, A) in the 3-dimentional Spectrum Space

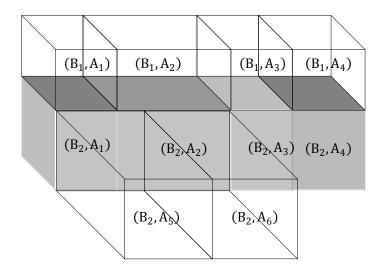


Figure 3A: Example of 10 Spectrum Blocks

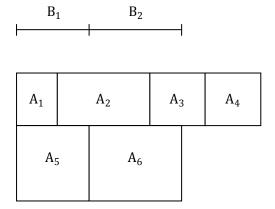


Figure 3B: 2 Bands and 6 Areas for the Blocks of Figure 3A

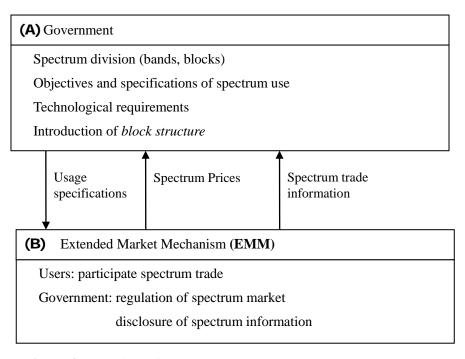


Figure 4: Overview of spectrum use with EMM

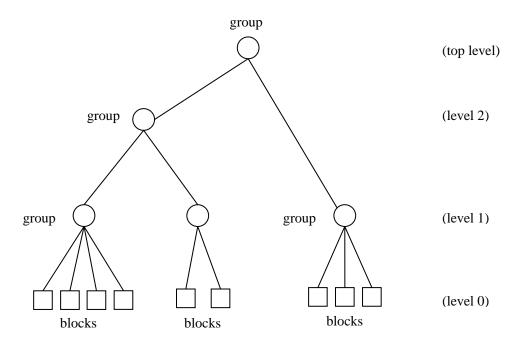


Figure 5: Spectrum Groups (Block Structure)

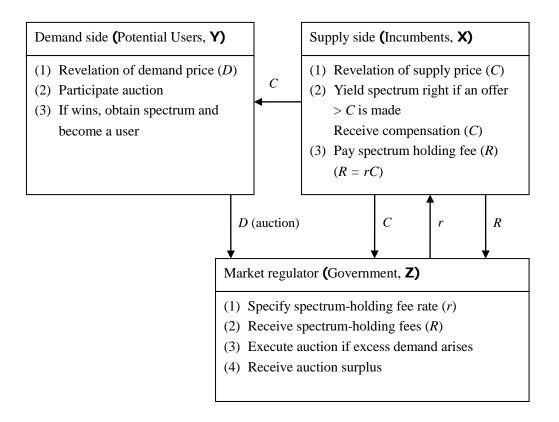


Figure 6: Organization of EMM

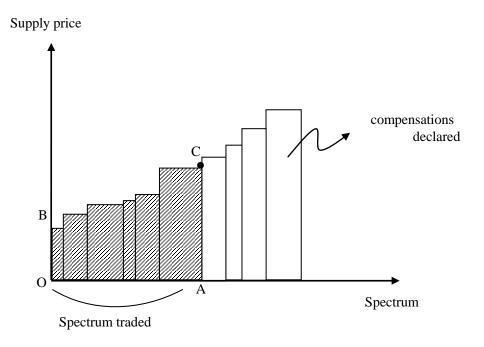


Figure 7A: "Supply" of Spectrum

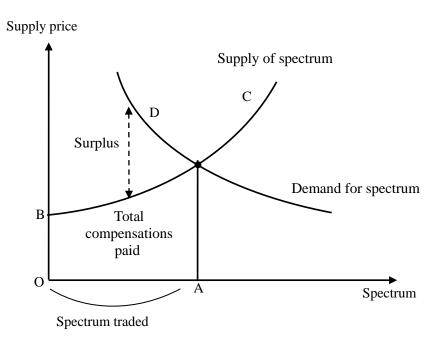


Figure 7B: "Demand and Supply" of Spectrum

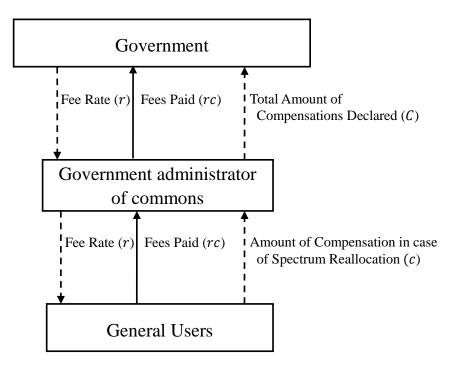


Figure 8: Supply Price Revealed by Commons Users

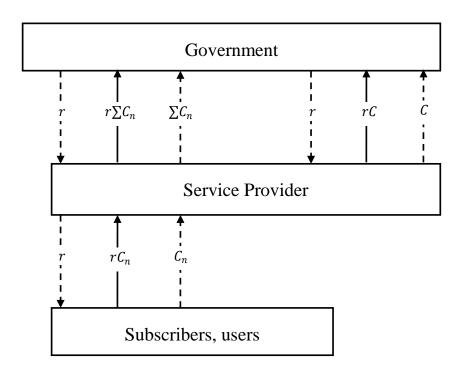


Figure 9: Supply Prices Revealed by a Service Provider and Subscribers



Figure 10A: Example of truthful supply prices

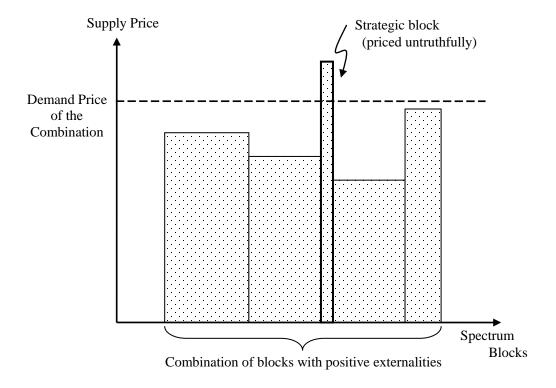


Figure 10B: Example of truthful and untruthful supply prices