

Simplifying Conversion and Enhancing Outgoing Product Quality on the ICOS Vision System with TRIZ

Darin MoreiraIntel Malaysia

Co-Authors:

Sum Bun, Sushiph & CT Ong

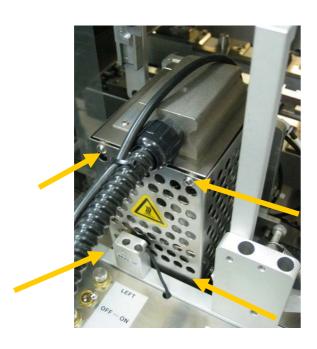
Background

ICOS vision system

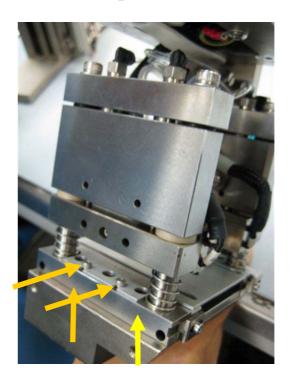
 ICOS is an inspection tool used for screening cosmetic defects like co-planarity, ball deformation, ball height and etc

Problem Statement

Incomplete Seal & Open Seal of the Tape & Reel


Robustness of the outgoing material packaging

ICOS Seal Head complexity


- ❖ A conversion takes up quite a significant amount of time due to the complexity of the Seal Head
- Hard to reach areas in the Seal Head
 - Only a small opening available to screw and unscrew parts

Example of hard to reach parts/areas

Seal Head Cover with washers and screws

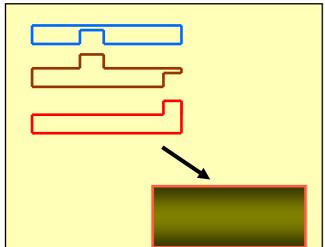
The part that takes the longest during the conversion (2X)

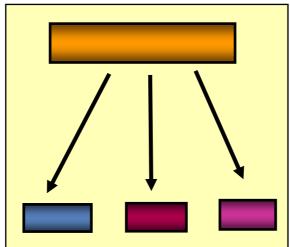
Space is extremely limited in the ICOS for conventional tools

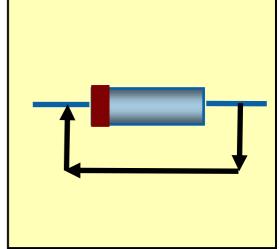
From Problem to Solution...

Applied *Theory of Inventive Problem Solving (TRIZ)* to problem for the solution

- Build Function Model
- Use the 40 Inventive principles
- Perform Trimming
- Make changes based upon recommendation
- Results and Impact




Function Model Seal Head TRIZ Japan 2009


TRIZ Inventive Principles

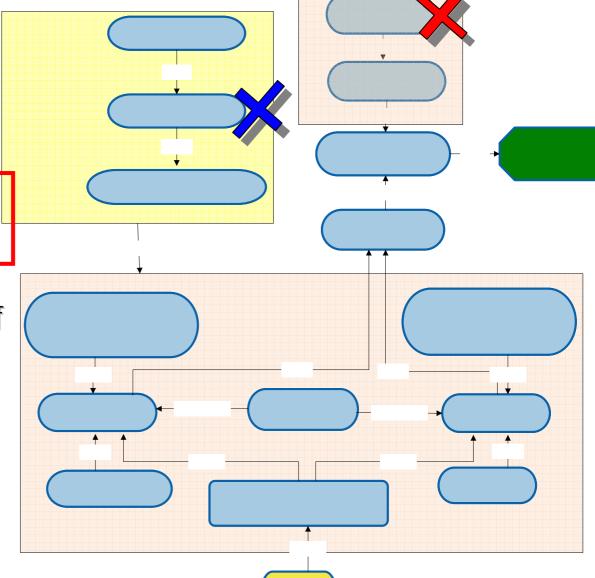
Contradiction

If the washers and seal head cover is fixed properly, Reliability of the seal head is optimized but time spent to fix all items back or remove is longer If top plate screws can be easily accessed, time spent to remove parts reduces but top plate shape will have to change If sealing quality is monitored, reliability improves but a new process will have to be introduced

Merging

Segmentation

Feedback

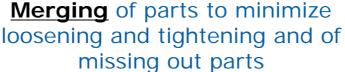

Trimming

Trimming rules

Rule A: You don't need the function anymore

Rule B: The object performs the function itself

Rule C: Some other component does the function



Before

Changes Made

Segment the 1 piece top plate into 3 pieces and eliminate the large centre piece. Weld the top plate to the slider body and eliminated the 4 screws. No need to remove or reinstall the top plate moving forward

Add a new down stroke sensor that serves as a <u>feedback</u> mechanism. This provides detection for sealing line quality

Results & Impact

- **35%** reduction in time used for a conversion
- Total reduction of almost 50% of downtime, related to Sealing defect
- Machine productivity improves with the simplification of the conversion process which reduces the scheduled downtime
- Overall sealing quality improves as there is a new feedback system to monitor the quality of sealing

Key Learning / Summary

Problem duration: A few years now

What was done previously: Technician will have to manually fine tune of the Seal head by checking the sealing line from time to time.

With TRIZ:

- 1. The complexity of the Seal Head is simplified
- 2. Time taken to reach the solution ~ 3 months (from idea to implementation)
- 3. The individual constraints were eliminated as it allows you to look at each problem differently with the use of the contradiction matrix
- 4. Stability of the Seal Head is better
- 5. Time used during conversion reduced

Acknowledgement

Darin Moreira Team Member

Ong, CT Team Member

Sum Bun, Sushiph Team member

Vishva Lakshmanan Manager and Mentor

TS Yeoh TRIZ Instructor

TJ Yeoh TRIZ Instructor

Song, Chia Li TRIZ Instructor

