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This paper considers an optimal control problem with a parameter and
develops a systematic method for comparative dynamics. A sufficient condi­
tion for the optimum solution to be differentiable with respect to the parameter
is provided. Formulas for computing the derivative are given in the form of
initial-value problems of linear differential equations. The possibility of dis­
continuous optimal controls is fully taken care of. An example of the com­
parative dynamics is given in terms of a model of optimal capital accumulation.

I. INTRODUCTION

Optimal control theory was developed by Pontryagin and his associates
[9] as a renovation of the classical theory of calculus of variations. It
provides a convenient method for analyzing a wide class of economic
problems such as planning the optimal capital accumulation for an
economy and investigating the process of investment by a firm or by an
individual. Although many applications of Pontryagin's theory to
economic problems have been published, only a few of them have paid
attention to the problem of comparative dynamics (sensitivity analysis),
i.e., that of analyzing the effect of a parameter on the optimum solution. I

* An earlier version of a part of this paper was included in the author's doctoral
dissertation submitted to Stanford University, 1968. lowe much to Professor Kenneth
J. Arrow, especially for the results obtained in Section IV.

t Present address: Department of Economics, Queen's University, Kingston, Ontario,
Canada.

1 See, e.g., Koopmans [6, pp. 119-1221, for a graphical approach to comparative
dynamics in a model of optimal economic growth. Cass [3, p. 844] also dealt with a
comparative dynamics in optimal growth. Jorgenson [5, pp. 147-151] suggested a
method for comparative dynamics in investment theory. Oniki [7 and 8] made extensive
use of the method presented in this paper for solving problems of optimal growth and
human investment, respectively. Outside the economics literature, Barriere [21 set forth
investigating the subject. His viewpoint, however, is narrower than that of this paper:

265
Copyright 197J by Academic Press, Inc.
All rights of reprouuction in any form reserved.



266 ONIKI

In planning problems, comparative dynamics may be useful for
investigating the dependence of a plan on exogenous factors. In dynamic
behavioral models, it could serve as a tool for deriving the intertemporal
demand or supply functions of commodities.

A systematic method is developed for dealing with comparative
dynamics in optimal control problems. To facilitate the basic idea, let us
consider a simple problem of maximizing the function f(x, e) in x for a
given value of e, which is a parameter. What we usually do is to obtain the
first-order condition

fx(X, e) = 0, (I)

and to solve this for x. Assume that the solution x thus obtained is a
unique optimum. The dependence of this optimum on the parameter e
may be studied by calculating the derivative of x with respect to e:

.f~x . x'(e) + .f~fJ = ° or x'(e) = _(fxx)-l . fXfJ • (2)

This method can be extended to constrained maximum problems. In the
theory of household behavior, for example, the solution is known in such
terms as Slutzky equations, Hicksians, etc., where the role of e is played
by income or the commodity prices.

It is noted that Pontryagin's optimum condition for a control problem
(composed of the maximum principle, auxiliary differential equations,
and transversality conditions) is essentially the first-order condition;
in this sense, it is an extension of (1).2 What we intend to do in this paper
under the name of comparative dynamics is to extend (2) to optimal control
problems. Under certain assumptions, we shall provide a set of formulas
by means of which the derivatives of the optimum solution of a control
problem with respect to a parameter may be calculated.

It is well known that under certain conditions a solution of a system of
differential equations is differentiable with respect to a parameter appearing
in the system (the theorem of variational differential equations).3 Since
Pontryagin's condition contains differential equations, it is suggested that
one might make use of this theorem for comparative dynamics. However,

first, he analyzed the effects on the objective function only, while we cover those on the
optimum control and the state variables as well; second, he did not state any condition
sufficient for the objective function to be differentiable with respect to a parameter,
while we do.

" In fact, the maximum principle contains more than the first-order condition in the
calculus of variations does. In this paper, however, we do not exploit the implications
of the maximum principle beyond those expressed in terms of first-order derivatives.

3 See Lemma 1 of Section III.
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an immediate application is difficult, since the theorem presupposes that
the differential equations are continuous in state variables, while those
appearing in Pontryagin's condition frequently exhibit discontinuities in
state variables (e.g., bang-bang controls).4 To resolve this difficulty, we
extend the theorem of variational equations to the discontinuous case
(Section Ill). Once this is attained, we can readily derive formulas for
comparative dynamics from Pontryagin's condition (Section IV).

The method of comparative dynamics to be presented in this paper is
sufficiently general to allow a parameter to appear almost anywhere in the
original control problem; e.g., the objective function may contain it,
the initial state may be a function of it, or the constraint on the control
may be affected by it (or any combination of these). The paper deals with
the effect of a parameter on the optimal control, on the state variables, and
on the objective function. Both cases of finite and infinite horizons are
considered.

In the following section (Section II) we formulate the problem.
Section I[] is devoted to extending the theorem of variational differential
equations to the case in which the differential equations are discontinuous
in the state variables. The main results will be presented in Section IV.
In that section, a set of conditions sufficient for the optimum solution to
be differentiable with respect to a given parameter will be stated, together
with formulas for computing the derivative. The last section (Section V)
is devoted to an example in which the method of comparative dynamics is
applied to a model of optimal capital accumulation.

1I. THE PROBLEM

We shall be concerned with an optimal control problem which contains
a parameter. The problem, for a given value of the parameter, is one
including fixed time-horizons, variable end points, autonomous differential
equations, and fixed constraints on controls.5•6 The objective function,

,~ tt

V =, I jO(x(t), u(t), (9) dt, (3)
.. to

• Cass [3, footnote 51 used this theorem for comparative dynamics. In his case,
however, the optimal control is continuous in state variables, and the difficulty stated
in the text does not arise.

5 The assumption that the differential equations are autonomous is not restrictive,
since a nonautonomous system can always be converted into an autonomous system
by introducing an additional state variable, X n+! .cc t, say.

6 For simplicity, we assume that for each e the constraints on controls are fixed so
that g in (5) is independent of x. The main results of the paper will continue to hold
if g(u, e) is replaced by g(x, u, e) (with appropriate modifications, some of which will be
mentioned later in footnotes).
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is maximized in x(t) and u(t), subject to

x(t) =c f(x(t), u(t), 8),

g(u(t), 8) > 0 (to tl ),

'i(X(t,), 8) = 0 (i 0, I),

(4)

(5)

(6)

where (to , tl )( - CIJ to < t l +CIJ) is a fixed interval of time, x is an
n-vector (the state variables), u is an m-vector (the controls), 8 is a number
(the parameter), and the functions fO : R" im ;1 -> RI, f: R"+II,+I -->- R",
" : Rn+1 -->- Rri(O r, n), g: Rm+1 ~> RI'(k > 0) are all assumed
continuously differentiable, Rj being aj-dimensional space. Let us put

so that

v(t) r(x(t), u(t), 8)

v(O) = 0,
(7)

(3a)

If the functions u(t,8), x(t,8), and v(t,8) maXImIze (3a) subject to
(4)-(7) for a given parameter 8, they are called an optimum. In addition,
we call such u(t, 8) an optimal control.

The appearance of 8 in the optimum functions reflects the fact that, in
general, an optimum depends on it. Comparative dynamics deals with
how a change in 8 affects an optimum. First of all, it can easily be estab­
lished that for each t the set of optimum solutions u(t, 8) and x(t, 8) is
upper semicontinuous in 8 (with respect to the set inclusion relation),
since everything is continuous in 8. Furthermore, the objective function

(3b)

is continuous in e. In the present paper, we focus our attention on the
differentiability of an optimum solution with respect to e, assuming that an
optimum is unique.

It is seen that without losing generality the differentiability of an
optimum solution may be examined with an additional assumption:
8 = O. For simplicity, when 8 is set equal to zero, we may suppress the
number 0 for 8 in the argument of a function. Thus, f(x, u) = f(x, u, 0),
x(t) = x(t, 0), etc.
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Next, we state Pontryagin's optimum condition for the control
problem. 7•s First of all, we define the Hamiltonian,

H(p, x, u, e) C~ jo(x, u, e) + p . .r(x, u, e),

and its maximum in u subject to (5),

M(p, x, e) -~ max H(p, x, u, e),
Y(u,e)jO

(8)

(9)

where p is an II-vector (the auxiliary variables) and the center dot in (8)
denotes the inner product. If u(t) and x(t) is an optimum for a problem in
which e = 0, then there exists a nontrivial function pet) on (to, t l ) such
that

the maximum principle,

H(p(t), x(t), u(t» = AI(p(t), x(t»),

the auxiliary differential equations are

p(t)~, --HJ.(p(t), x(t), u(t»

and the transversality conditions,

(10)

( I])

P(ti) E U ~= U(x(t;)

are satisfied, provided that

U c= 0, I),

U= 0, I),

(12)

(13 )

where H,. and 'x' are, respectively, the partial derivatives of Hand 'i
with respect to x; HI' will be treated as an II-vector and 'xi as an (r, ' 11)­
matrix. Further, U is the subspace of W' spanned by the row vectors of

'/(X(ti )).
The optimum solution characterized by the above condition ranges

over a very wide variety. In order to isolate a class of optimum solutions

7 See Pontryagin [9, pp. 66~69, 189-191]. If the time-horizon is infinite so that 11 .'

+--x', then we assume that lim" 0+00 x(t,) exists. (Similarly, for the case of to ce, •• -x.)
Furthermore, an optimum solution of the infinite-horizon problem might not satisfy
Pontryagin's condition (See Arrow and Kurz [I, p. 46]). In the following, we exclude
such cases from our consideration.

S If the function g depends not only on (u, 0) but also on x, then (9) is modified
accordingly, and (10) is replaced by p(t) = -[Hip(t), x(t), I/(t)) +- '\(t)gixU), 1/(1»].
where '\(t) is the Lagrangian multipliers associated with g in (9). With these modifica­
tions, the following discussions will continue to hold.
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which can be studied by means of comparative dynamics, we define a
regular optimum in the following way:

DEFINITION. (a) A pair (p, x) is regular at 8, if the control u satisfying
the maximum principle,

H(p, x, u, 8) = M(p, x, 8),

is unique and is a continuously differentiable function,

u = u(p, x, 8),

( 16)

(15)

in a neighborhood of (p, x, 8).

(b) An optimum control u(t,8) is regular at 8 and t, if
(p(t, 8), x(t, 8)) is regular at 8 and u(t, 8) = u(p(t, 8), x(t, 8), 8).

(c) An optimum control u(t, 8) is regular on (to, t1 ) at 8, if the
optimum control is regular at 8 and at to, at t1 , and at each t of (to, t1 )

but afinite num ber of points, say Sj (j = I, ... , q; q > 0) (s;s being called
switching time-points), where to < SI < S2 < ... < Sq < t] .

It is easily seen that not all optimum solutions are regular. In economic
applications, however, optimum solutions usually turn out to be regular.
In the sequel, we shall be concerned only with regular optimum solutions.

The concept of regularity defined above has a close relation to (in fact,
is originated from) the method of phase-diagrams, which is widely used
for solving control problems. The following is a typical regular optimum
for a problem with 8 = 0, which will be described in terms of phase­
diagrams: The entire interval (to , t1) is divided into (q + I) subintervals by
the switching time-points, S] , •.. , Sq. We consider an optimal control u(t)
which is regular on (to, t]) at 8 == o. It is smooth in the interior of any
subinterval, but it may be discontinuous at a switching time-point. On
the other hand, the (p, x)-space is divided into regions of regular points,
each region being an open set (from definition (a) of regularity). The path
of the optimum solution (p(t), x(t» starts at an interior point of a region
at t = to, crosses its boundary at t = SI , stays in the interior of another
region for S1 < t < S2' crosses its boundary at t = S2' and so on. [t
terminates at an interior point of some region at t = t]. The path
is smooth in the interior of any region. At a boundary point it is continuous
but may not be smooth. If we denote the boundary that the path crosses
at t c.= Sj by the equation hi(p, x) = 0, then

(j = I,... , q). (16)
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We call (p(s;), xes;)) a switching point. Figures la and 1b illustrate a regular
optimum solution for a case of n = m = I and q = 2.

An optimum control "switches" at a time-point, say t = s, for various
reasons. Switching might occur because the set of effective constraints on
controls is changed from one to another at t = s. Also, it might occur
because the control satisfying (14) jumps from a local maximum to another
local maximum at t = s. We study the properties of the optimum control
at a switching point in more detail in Section IV.

We are now able to state the problem. First, to simplify the notation, let
us introduce

z== (p, x),

F(z, 6) c=c::: (- HxCz, u(z, 6), 6)

p

phase 1

f(x, u(z, 6), 6)),

(pO, ),x(I, ))

phase 3

• x

( 17)

FIG. la. Example of a regular optimum solution.
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FIG. lb. Example of a regular optimum control.
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where z is a (2n)-vector and F: R2u+1 -+ R2n is a continuously differentiable
function for regular z =~ (p, x). It may be discontinuous at a point z
satisfying hj(z) =. O. Then, the constraints (4)-(6), the optimum condition
(10)-( 12), and the switchings (\ 6) for a problem in which e = 0 can be
reduced to the original and the auxiliary diflerential equations together with
the maximum principle,

i(t) = F(z(t)),

for regular t in (to, t l ) (i.e., for all t but S1 , ••. , Sq);

the switchings,

(18)

(j = L..., q); (J 9)

and the end and the transversality conditions,

pi(Z(t,) = 0 (i = 0, I), (20)

where pi: R2n,1 -+ R" is a function of (z, e) and (20) is equivalent to
(5) and (12). To see this, it suffices to observe from (13) and the definition
of L, that (12) is equivalent to (n - r,) linear constraints on Z(tl)'

Our task will then be to investigate how the function, z(t) z(t. 0), is
shifted when the parameter e is changed near e = O. In Section IV, we
obtain a set of conditions sufficient for z(t, e) to be differentiable with
respect to e at e = 0 and formulas to compute the derivative.

It is noted that the condition (18)-(20) is but a necessary condition for
optimum. Hence it is certainly possible that z(t) = z(t, 0) satisfying (\8)­
(20) is an optimum but z(t, e) satisfying equations like (18H20) for a
small e # 0 is not an optimum. If this is the case, the derivative of z(t, e)
with respect to e at e = 0, though it exists, does not describe the shift of
the optimum solution. Such a case may arise, even if the optimum for
e = 0 is regular. (If the optimum is not unique at 8 = 0, then usual1y
this will be the case.) It seems that there is no systematic method for
dealing with this kind of complexity. In applications, however, it is
frequently the case that the function z(t, 8) satisfying (18H20) is the
unique optimum for all e near 8 = O. The method of comparative
dynamics to be presented below can be used in such cases.

Ill. VARIATIONAL DIFFERENTIAL EQUATIONS

In this section, we state two lemmas on variational differential equations.
The first is wel1 known in the theory of ordinary differential equations. The
second is an extension of the first to the case in which the differential
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equations are discontinuous in the state variables. The notation in this
section is independent of that in the previous and the following sections.

Consider the following system of differential equations and an initial
condition, both containing a parameter 8:

:( = F(x, 8),

x(7(8) = g(8),

(21 )

(22)

where x and gare vectors, F a vector-valued function; 7 denotes the initial
time, and g the initial point of the state variable x. The functions F, 7, g
are all continuously differentiable. Further, F x , F fJ , 7fJ, etc., are partial
derivatives, and F(x, 0) •.~ F(x), g(O)- g, etc. It is assumed that a fixed
interval of time T-~ (to , t1) is given, and that

(23)

LEMMA J. (Peano). Suppose that a solution x(t) of(21) and (22) exists
for 8 = 0 on the entire interval T:

X(t) ~~ F(x(t»,

X(7) = g.

(t E T), (2Ia)

(22a)

Then, there exists a positive number, say e, for which the following is
true: (i) For each 8(1 8 I < e), a unique solution x(t, 8) of(21) and (22)
exish.,on T;

"(ii) For each 8(1 81 < e) and each t(t E T), thefollowing expressions
eXistf and are continuous in (t, 8):

X(t, 8)-~ 8x(t, 8)/CJt,

XfJ(t, 8) = ax(t, 8)/88,

:(fJ(t, 8) ~= 82x(t, 8)/8t 88 = 82x(t, 8)/88 ot;

(24)

(iii) The derivative XfJ(t) .=. XfJ(t, 0) satisfies the system of variational
equations,

XfJ(t) = Fix(t)) XfJ(t) -+- FfJ(x(t», on T,

and the initial condition,

(25)

(26)

9 For a proof, see Pontryagin [10, pp. 170-177, 194, 198] or Hartman [4, pp. 93-94,
95-100].
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Next, let hex, e) be a scalar-valued function. We deal with the following
system of differential equations with discontinuities in the state variables:

x = F(x, e), if hex, e) :? 0,

= G(x, e), if hex, e) < 0,

X(T(e» = tee),

(27)

(28)

where F and G are vector-valued functions. We assume that the functions
F, G, h, T, and t are all continuously differentiable with respect to (x, e)
or e. We assume, for definiteness, that

h(t(O), 0) ~-'" h(t) > o. (29)

LEMMA 2. Suppose that a solution x(l)(t E T) of (27) and (28) exists/or
61 = O. Thefunction x(t) satisfies

x(t) is continuous on T,

and there exists a switching time s(to < s < t1) such that

(30)

x(t) = F(x(t»

hexes»~ = 0;

x(t) = G(x(t»

x(T) = t.

Suppose further that

and h(x(t» > 0

and h(x(t» < 0

for to ~ t < s; (31 )

(32)

(33)

(34)

hx(x(s» . F(x(s» eft 0 and hix(s»' G(x(s» # 0, (35)

where the dol denotes the inner product.
Then, there exists a positive number, say 6,jor which the jolla wing is true:

(i) For each 61(1 61 I < ~h there uniquely exists a switching lime
see) and a solution x(t, e) 0(27) and (28) on T. Thefunctions see), x(t, e)
satisfy:

x(t, e) = F(x(t. e), e) and h(x(t, e), e) > for to ~ t < see); (36)

h(x(s(e), e), e) = 0; (37)

x(t, e) = G(x(t, e), e) and h(x(t, e), e) < 0 for see) < t ~ t1 ; (38)

x(T( e), e) = t(e). (39)
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(ii) For each e(! e I < 8) and each t(t E T, t -# see»~, the following
derivatives exist and are continuous in e or (t, e):

se(e) ~ ds(e)/de,

x(t, e) == 8x(t, e)/at,

xe(t, e) = ax(t, e)/8e,

xe(t, e) 0= a2x(t, e)/at ae = a2x(t, e)/ae at.

(40)

(iii) The derivatives xe(t) ~. xe(t, O)(t -# s) and Se CCc se(O) satisfy:

for to ~ t < s;xe(t) = Fx(x(t» xe(t) + Fe(x(t»

Xe(T) = ge - X(T) Te ;

xe(t) = Gx(x(t» xe(t) + Ge(x(t» for s < t ~ t1 ;

xe(s + 0) = xe(s - 0) - [xes + 0) - xes - 0)] Se ;

Se = -[hxCx(s» . xe(s - 0) + he(x(s»/hxCx(s» . xes - 0)]

- [hxCx(s» . xe(s + 0) -:- he(x(s»/h,{x(s» . xes + 0)].

(iv) The derivative,

dx(s)/de = dx(s(e), e)/de le~o,

exists and is given by

dx(s)/de = xes - 0) . Se + xe(s - 0)

= xes + 0) . Se + xe(s + 0).10

(41 )

(42)

(43)

(44)

(45)

(46)

(47)

Figure 2 illustrates Lemma 2. It is noted that formulas (41)-(45) are
two successive initial-value problems of linear differential equations; a
program which solves an initial-value problem of linear differential
equations should also be able to solve (41 )-(45). For, we may first solve (42)
for xe(t) on (to, s) given by (42). From this we may compute xe(s - 0),
and then Se by means of (45). Then, we may proceed to solve (43) for xe(t)
on (s, t1) given xe(s + 0) computed from (44).

Equation (47) provides a formula to compute the shift of the switching
point x(s(e), e); the first term of the right side expresses its shift arising
from the change in the switching time-point see), and the second that
arising from the change in the function x(t, e).

10 For a proof of Lemma 2, see the Appendix of the author's discussion paper, "Com­
parative Dynamics in Optimal Control Theory," Technical Report No.1 0, Project on
Efficiency of Decision Making in Economic Systems, Harvard University, 1972.
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L- x,

FIG. 2. Shift of the solution of differential equations with discontinuities along a
curve h -- O.

IV. COMPARATIVE DYNAMICS

In Section II, Pontryagin's condition for the optimum solution z(t)
has been reduced into the system (18)-(20). This system is a two-point
boundary-value problem of ordinary differential equations possibly with
discontinuities in the state variables. In the present section, we make use
of Lemma 2 of the previous section to present a set of conditions sufficient
for the function z(t) ~ z(t, 0) to be differentiable with respect to e near
e = 0 and to obtain formulas to compute the derivative.

THEOREM. Suppose that a unique (regular) optimum solutionz (t)

(to < ttl) of(18)-(20) exists. For simplicity, we state the theorem for the
case q = I; we write Sl ~~ S, hi = h, etc. The function F(z, e) is assumed
continuously dif{erentiablefor all (z, e) such that e is near 0 alld z is regular
at e. The functions h(z, e) alld l[fi(Z, e) are also cOlltinously dijferemiable
in neighborhoods of (z(s), 0) and (zU,), OJ, respectively. Suppose further that
thefol/owing is satisfied by z(t):

hzCz(s)) . F(z(s ± 0)) ~ O. (48)

Then, Lemma 2 implies that there exist functions aCT), e) and y(t, T), e)
satis{ying

5'Ct, T), e) == F(y(t, T), e), e) (to tl , t r aCT), e)), (49)

y(to, T), e) cc= T). and (50)

h(y(a{7j, e), T), e), e) = 0, (51)
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where y is a (2n)-vector (state variables), Y) a (2n)-vector representing the
initial value for y (parameters), and e a number (a parameter). (This can be
shown by applying Lemma 2 (2n -I- I)-times for the (2n) components of Y)
and e.) Furthermore, the derivatives

an - (aloY)) a(z(to), 0),

UC0-··· (alae) a(z(to), 0),

y,,(t) (alay))y(t,z(to), 0), and

Ye(t) -- 0loe y(t, z(to), 0) (t 7'- s)

exist. We assume that

(52)

(53)

I A I (54)

where A is a (2n, 2n)-matrix, I A i is the determinant of A, AO lJIzo and
Al lJI/ . y/ are (n, 2n)-matrices, lJI/ c - lJI/(z(t;)) is the derivative of
lJIi(Z, e) with respect to z at (z(t;), 0), and Yn) ~ Yn(tl) is a (2n, 2n)-matrix
defined by (53).

Then, there exists a positive number, say e,for which thefollowing is true:

(i) For each e(1 e I < e), there uniquely exists a switching time-point
s(e) and a unique regular solution z(t, e) sati4'ying

(t * (Js),

z(t, e) ~= F(z(t, e), e) for all t I- s(e),

h(z(s(e), e), e) = 0, and

lJIi(z(t; , e), e) = 0 (i = 0, 1).

(ii) The deriuatives,

Se ~•. se(O) ._. (dlde)s(e)le~(),

ze(t)· ze(t,O) (aloe) z(t, e)If)~()

(dlde) z(s)c~ (dlde) z(s(e), e)!e~o,

exist and satisfy

(55)

(56)

,-' (57)
v

(58)

and (59)

(60)

Ze(t) ~~. Fz(z(t)) . ze(t) -j- Fe(z(t))

;;(.)(10) - -~A·) . E,

(t 7'- s), (61 )

(62)

;;e(s f- 0) = ;;f)(s ., 0) -- [z(s 0) -- z(s - 0)] Sf) , (63)

S") c~-[hA;;(s» . zf'is J: 0) + h,~(z(s»lhz(z(s) . z(s ± 0)], and (64)

(dlde) z(s) ...~ z(s j: 0) . Se -+- zeC~ ± 0), (65)
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(66)

is a (2n)-vecfor, Bi ~. lJf/yie + lJfei is an n-vecfor, lJfei c.,,= lJfei(z(f;)) is
the derivative of lJfi(Z, B) with respect to B at (z(ti ), 0), and Yei =~ Ye(t,) is
a (2n)-vector defined by (53)Y

Some remarks on this theorem follow. First, the assumption of con­
tinuous differentiability of F(z, B) would be satisfied if the derivatives
I", , j;, , j~ Jxx Jxn Jxe ,./~O, j~oJeo,j~m , j~" , and j~e exist and are con­
tinuous [see (8), (15), and (17)]; we need the second-order derivatives to
obtain Se and ze(t). (In the simple maximization problem, we require the
existence of the second-order derivativefxx to obtain X e . See (2).)

Second, (48) and (54) are assumed for regularity (not in the sense
defined in Section n but in the general sense). If (48) does not hold, then
it is possible that the number of switching time-points changes when B
varies near 0 or even that the optimum solution z(t, B) is no more regular
(in the sense defined in Section Il) for a sm~ll B. If (54) is not satisfied,
then it is possible that z(t, B) is no more unique for a small B so that the
derivative ze(t) may not be defined.

Third, (61-64) are successive initial-value problems of linear differential
equations. They are the formulas for computing the derivatives Sf) and
Ze(f). It is straightforward (if tedious) to write down Eq. (61) in terms of
the original notation j(x, u, B), rex, u, B), and u(p, x, B) [see (8), 15),
and (17)]. In applications, however, (61) may be obtained simply by
differentiating (55) with respect to B and putting B = O.

Fourth, the derivative of the maximized objective function with respect
to the parameter (du/dB) may be obtained by substituting x(t, B) and
U(f, B), respectively, for x(t) and U(f) in (3) and then differentiating (3)
with respect to B. Furthermore, dv/dB can be expressed in a simpler and
more useful form by using the auxiliary variables p(t).l2

I n the following, we consider two special cases of the theorem by
introducing further assumptions on the end and the transversality
conditions (20):

(a) The state variable at to is fixed at a point determined solely by the
parameter, and the state variable at t I is left free:

11 For a proof of this theorem, see Section IV of the paper referred to in footnote 10.
12 See Section V of the paper referred to in footnote 10.
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The conditions (20) now read

X(to, e) - ,(e) = 0,

P(t1' e) = 0,
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(20a)

where' is an n-vector-valued function of 19 which is smooth near 19 = 0.
Let us put

We then obtain

Ze(t) =C
C (Pe*(t) xe*(t)) (t 0/= s),

7) "= (17, g), and

Yn(t) =cc \ p,,(f) p!f(t) I,
x,,(t) X/f)

Ye(t) == (Pe(t)Xe(t», (t 0/= s).

(59a)

(50a)

(53a)

(62a)

(54a)

so that the regularity condition (54) and the initial condition (62) for this
case can be written as

I P,,(t1) I 0/= 0,

Pe*(to) = -P,,(t1)-1 . (P!f(t1) 'e + Pe(t1»'

xe *(to) = 'e,

where 'e is the derivative of ,(e) at 19 = 0.

(b) The initial and the terminal values of the state variables are
determined solely by the parameter:

(i = 0, I),

say. For this case, we obtain

and hence

I X,,(t1)1 0/= 0,

Pe*(to) = -X,,(t1)-1 . (X!f(t1) 'eo + Xe(t1) - '(1),

xe*(to) = 'eo.

(54b)

(62b)
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V. AN EXAMPLE-COMPARATIVE DYNAMICS IN A MODEL OF OPTIMAL

CAPITAL ACCUMULATION

In the present section, we show how the comparative dynamics as
presented in the preceding sections can be applied to economic problems.
A standard model of optimal capital accumulation developed by Cass [3]
will be used as an exampleY For short, we follow his notation and do not
reproduce the definition of the variables used in [3].

To begin with, we write Pontryagin's condition for Cass's model: 'l

q = (0 --- f'(k)) q.

k" f(k) - c(q),

k(O) = kU
, k( T) = F,

( l8c)

(20c)

where u'(c(q» -ccc q. For simplicity, it is assumed that A c=. 0 and that
z > 0 throughout the planning period (0, T) (i.e., no switching).

We consider the discount rate 0 as the parameter. We then write:
q == q(t, 0), k == k(t, 0), c c(q(t,o» c(t, 0), etc. It is seen from (62b)
that we need to obtain kqo(T) and ka(T), where q(O) ="" qU. To do this, let
us differentiate (18c) and (20c) with respect to qU, obtaining

-j"q I' ·1 qqO I
f' kqo '

The sign of each element in the square matrix above is determined from
Cass's assumption,I5

To investigate the path of qqo(t) and kao(t), we construct a phase diagram
(see Fig. 3). Each arrow in the phase diagram indicates a possible direction
of the path. Since the path starts at a point on the upper half of the vertical
axis, it is clear from the diagram that

for all t. (67)

13 The method presented in this section was once introduced by Oniki [7].
H See Cass [3, pp. 837-838].
15 See Cass [3, pp. 834~835].
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------r------o+----~L..---k QO

/ x
Flc. 3. Phase-diagram of (1/",,(11, k",,(t n.

Following a similar method. we obtain

-f"q I
f' !

i {fo i
I k 8 I

i (/ 'I

! 0 i
.)

I ;

(f,,(0)

11 (fa I I':
I f..", 0

O. k;;(O) = O.

From this and a phase diagram (see path A in Fig. 41, we conclude that

qo(t) :~ 0,

Then, (62b. 67, and 69) yield

o for all I. (69)

k,,*(O) O.

In addition, since k*(T. 8) - F.

(62c)

k o*( T) o. (70)

We finally consider variational equations for (f,,*(t) and k,,"(t). which is
a special case 01'(61). In fact, these equations are obtained by substituting
qo" and k/j* into (68); we may use Fig. 4 to describe the path of (j.,""(t),
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x

>
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<

x
FJ(;. 4. Phase-diagrams of (qa(t), ka(t)) and (qa'(t), ka"(I)

k,,*(I). In veiw orthe end conditions (62c) and (70). we know that the path
must start at a point on the lower half of the vertical axis. and must
terminate at a point on the upper half of it. Hence, it stays within the
second and the third quadrants. It is seen that the path may cross the
horizontal axis more than once. bot never the vertical axis. Path B in
Fig. 4 is a typical one.

From the above consideration, we can conclude that

0, for all t,
(71)

c'(q(l» . q,,*(I) 0 for small t,

o for large t.

which summarizes the effect of a change in 3 on the optimum path.
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