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This series of research is going to review
basic concepts in Software Engineering & Computer Science 

one by one with the eyes of TRIZ. 

Three aims:
(1)  To clarify the concepts in SE/CS from the TRIZ views
(2)  To feed the knowledge in SE/CS back into TRIZ 
(3)  To clarify how to apply TRIZ to software development 

and software-based problems.

Text in SE:  "Program Engineering --
Implementation, Design, Analysis, and Testing"

by Osamu Shigo (in Japanese, 2002) 



In our previous paper (TRIZCON2005): 
Structured Programming Reviewed with TRIZ:

Conventional teaching in SE/CS:
"Structured Programming is the theory

as originally proposed with the three constructs
and is compromised with practice

by adding four or so extra constructs."

Our view with TRIZ (over the conflict resolution): 
"Structured Programming in its final form is 

the programming style with tree-type procedural structure
(or non-skewed nesting of procedures) inside modules 
by using 3 + 4 or so basic control constructs. "  



Feedbacks from Structured Programming onto TRIZ:

Step-wise Refinement  ==>
TRIZ Inventive Principle 1 (Segmentation) should contain 

"Segmentation of Problems" Sub-Principle.  

Basic constructs ==>
TRIZ Inventive Principle 6 (Universality) should contain 

"Universal Standards" Sub-Principle. 

Hierachical structure of procedures ==>
TRIZ Inventive Principle 7 (Nesting) should contain 

"Hierarchy of Systems" Sub-Principle.   

In the present paper, we go ahead to review 
Step-wise Refinement and 
the Jackson Method

(or 'Jackson Structured Programming').



Top-down style of designing (in SE)  

TRIZ Segmentation (Pr. #1) and 
Local Quality (Pr. #3).

Sub-Principle: "Segmentation of Problems" (in Pr. #1)

Usage of pseudo-code (in SE)
to describe the procedural controls clearly 
while describing procedural contents in a natural lanuage

TRIZ Intermediary (Pr. #24)
Prior Action (Pr. #10) 
Partial or Excessive Action (Pr. #16)
Homogeneity (Pr. #33)

Step-wise Refinement 
at the step of detailed design of program modules



Criteria of good Step-wise Refinement (by Shigo) (1)

(in SE) "At any stage of refinement, 
the whole procedure should be made understandable 

with the description down to the level, 
without referring to any further detail and 
without being forced to read unnecessary details."  

"At any level of system description/design, 
the whole technical system should be made understandable 

with the description of the parts down to the level, 
without referring to any further detail and
without being forced to read unnecessary details of parts."

This partly corresponds to TRIZ Law of System Completeness
and the concept of hierarchy of systems;  

but it states more clearly. 

(TRIZ should learn more in this context.  
E.g., TRIZ Principles do not have a hierachical structure.) 

(in TRIZ)



Another Criterion of good Stepwise Refinement (by Shigo)
"To construct a (software) system 

so as to be able to refine each part of it individually." 

A 'poor' case of practice (by Shigo):

The whole 
process

Input

Process

Output

Input

Process

Output

Loop

TRIZ View: Reasonable case of refinement in 'Another Dimension' 

'Refining instructions individually' is just a first approximation.

Software engineers should better be prepared to 
introduce 'Another Dimension' (or a different aspect of view)

in the Step-wise Refinement.



The Jackson Method (or Jackson Structured Programming): 
for constructing software procedures for business applications. 

(1) Clarify the data structures of the input and of the output. 
(2) Construct a program structure 

so as to reflect the data structures of input and output data.  
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Shigo's Example:  Reporting the Command Inputs 
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Input the Command sequence and output the Report 
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Input a datum
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Flowchart of Program Built with Conventional Non-Jackson Method



Input a datum

Parameter data ?

Input a datum 

Process Parameter

yes

(Loop)

Process the Command 
with the Parameter

no  (in case of a next 
command or EOF)

Input a datum

Command data ? 

Command pre-process and 
Parameter part pre-process 

yes

no (in case of EOF)

End

(Loop)

Process a command

Flowchart of Program 
Built with 
the Jackson Method



Philosophy in the Jackson Method 
(in SE) "to build a software module

so as to reflect the structure of its input and output"  

"to build the structure of a technical system 
so as to reflect the structures of the materials and information

which are to be handled with and produced by it" 

Relevant to TRIZ principles, e.g., 
• 9-Windows method
• Asymmetry (Pr. #4) 
• Flexible Shell and Membrane (Pr. #30)
• Parameter Change (Pr.#35) 
• Composite Materials (Pr. #40)
• Selective Introduction of substances (Inventive Standards)
• Flexible Systems (Inventive Standards Da5)

(in TRIZ) 



However, the matching in software technologies is better and deeper:

"to build a software module
so as to reflect the structure of its input and output"  

Software:  

Hardware:  

Bank accounting 
data

Bank accounting 
procedure

Rocks and 
strata

Drilling device 
for civil engineering

Metal materials
and artifacts

Milling machine
for manufacturing

"to build the structure of a technical system 
so as to reflect the structures of the materials and information

which are to be handled with and produced by it" 

Desciplines concerning the inputs/outputs of a system 
are often very different from that of the system itself.   Difficulty 



Feedbacks to TRIZ from the Jackson Method

We should pay more attention to
'the Objects we are going to handle with the System'
in contrast to 'the component Objects of (i.e. within) the System'. 

Sub-principle "Introducing the Structures of Objects":
"The Objects to be processed by the technical system 

should be examined closely in their structures, 
especially from the aspects of spatial, temporal, causal, 

and logical structures; and
the structues of the Objects should be introduced 

in designing the structures of technical systems."

(This should be a sub-pinciple of 
the Laws of Completeness of Technical Systems. ) 

(in TRIZ) 



Concluding Remarks

The concept of Step-wise Refinement is important 
in analyzing problems and in designing (software) systems. 

The concept of data structures of inputs/outputs is useful 
in designing the structure of processing systems. 

These concepts in SE/CS are in harmony with TRIZ principles 
and have been developed in a more detailed and logical way 

than in TRIZ and hard-technologies.  

TRIZ can learn a lot from basic concepts in SE/CS, 
probably more than TRIZ can provide to SE/CS. 

TRIZ has contributed in some extent to SE/CS, e.g., 
in the cases of 'Refinement in Another Dimension'

to make the Step-wise Refinement more flexible.  

The present approach is slow but steady 
to explore the ways of applying TRIZ to software development.


