
Software Engineering and TRIZ (2)
Step-wise Refinement and the Jackson Method

Reviewed with TRIZ

Toru Nakagawa
(Osaka Gakuin Univ., Japan)

http://www.osaka-gu.ac.jp/php/nakagawa/TRIZ/eTRIZ/

ETRIA Conference
"TRIZ Future 2005"

Graz, Austria
November 16-18, 2005

This series of research is going to review
basic concepts in Software Engineering & Computer Science

one by one with the eyes of TRIZ.

Three aims:
(1) To clarify the concepts in SE/CS from the TRIZ views
(2) To feed the knowledge in SE/CS back into TRIZ
(3) To clarify how to apply TRIZ to software development

and software-based problems.

Text in SE: "Program Engineering --
Implementation, Design, Analysis, and Testing"

by Osamu Shigo (in Japanese, 2002)

In our previous paper (TRIZCON2005):
Structured Programming Reviewed with TRIZ:

Conventional teaching in SE/CS:
"Structured Programming is the theory

as originally proposed with the three constructs
and is compromised with practice

by adding four or so extra constructs."

Our view with TRIZ (over the conflict resolution):
"Structured Programming in its final form is

the programming style with tree-type procedural structure
(or non-skewed nesting of procedures) inside modules
by using 3 + 4 or so basic control constructs. "

Feedbacks from Structured Programming onto TRIZ:

Step-wise Refinement ==>
TRIZ Inventive Principle 1 (Segmentation) should contain

"Segmentation of Problems" Sub-Principle.

Basic constructs ==>
TRIZ Inventive Principle 6 (Universality) should contain

"Universal Standards" Sub-Principle.

Hierachical structure of procedures ==>
TRIZ Inventive Principle 7 (Nesting) should contain

"Hierarchy of Systems" Sub-Principle.

In the present paper, we go ahead to review
Step-wise Refinement and
the Jackson Method

(or 'Jackson Structured Programming').

Top-down style of designing (in SE)

TRIZ Segmentation (Pr. #1) and
Local Quality (Pr. #3).

Sub-Principle: "Segmentation of Problems" (in Pr. #1)

Usage of pseudo-code (in SE)
to describe the procedural controls clearly
while describing procedural contents in a natural lanuage

TRIZ Intermediary (Pr. #24)
Prior Action (Pr. #10)
Partial or Excessive Action (Pr. #16)
Homogeneity (Pr. #33)

Step-wise Refinement
at the step of detailed design of program modules

Criteria of good Step-wise Refinement (by Shigo) (1)

(in SE) "At any stage of refinement,
the whole procedure should be made understandable

with the description down to the level,
without referring to any further detail and
without being forced to read unnecessary details."

"At any level of system description/design,
the whole technical system should be made understandable

with the description of the parts down to the level,
without referring to any further detail and
without being forced to read unnecessary details of parts."

This partly corresponds to TRIZ Law of System Completeness
and the concept of hierarchy of systems;

but it states more clearly.

(TRIZ should learn more in this context.
E.g., TRIZ Principles do not have a hierachical structure.)

(in TRIZ)

Another Criterion of good Stepwise Refinement (by Shigo)
"To construct a (software) system

so as to be able to refine each part of it individually."

A 'poor' case of practice (by Shigo):

The whole
process

Input

Process

Output

Input

Process

Output

Loop

TRIZ View: Reasonable case of refinement in 'Another Dimension'

'Refining instructions individually' is just a first approximation.

Software engineers should better be prepared to
introduce 'Another Dimension' (or a different aspect of view)

in the Step-wise Refinement.

The Jackson Method (or Jackson Structured Programming):
for constructing software procedures for business applications.

(1) Clarify the data structures of the input and of the output.
(2) Construct a program structure

so as to reflect the data structures of input and output data.

Command name 3

Parameter C

Parameter A

Command name 2

Parameter B

Parameter A

Command name 1

Time

Parameters

Command data

Shigo's Example: Reporting the Command Inputs

Command sequence

Command part

Command name Parameter part

*

Parameter A Parameter C Parameter B
○ ○○

Parameter *

Data Structure of the Input

* Repetition ○ Selection

Report

Command report

Header Body

Report line

*

*

Command sequence

Command part

Command name Parameter part

*

Parameter A Parameter C Parameter B
○ ○○

Parameter *

Command sequence Report

Parameter A

Command part Command report

Command name Header Parameter part

Parameter

Parameter C Parameter B ○ ○○

Body

Report line **

*

Data Structure of Input Data Structure of Output

Structure of Program
Built with
the Jackson Method

* Repetition
○ Selection

Input the Command sequence and output the Report

Process
Parameter A

Process the Command and
output the Command report

Process the
Command name and

output the Header

○

Overall
pre-process Input Overall

post-process

Command
pre-process

Process the
Parameter part

Command
post-process

Parameter part
pre-process

Parameter part
post-process

Report body
pre-process

Report body
post-process

Process &
output the

Report line

Process
Parameter C

○
Process

Parameter B

○
Parameter
pre-process

Parameter
post-process Input

Input
* *

*

Structure of Program Built with the Jackson Method
(by Shigo)

Process the
Parameter

Output the
Report body

Process and
output a

Report line

Process
the Command

name and
output Header

Overall
pre-process

Overall
post-process

Command
pre-

process

Command
post-process

Parameter
part
pre-

process

Parameer part
post-process

Report body
pre-process

Report body
post-process

Post-pocess
of Command

In case
of

the first
command

first =
false

In case of
second or

later
command

Input

Command
post-

process

Parameter
part
post-

process

Report body
pre-process

Report
body
post-

process

Process
and

output a
Report line

○○

In case of
the first

Command

In case of
second or later

Command

○○

*

*

*

Input the Command sequence and output the Report

Output
Report body

Input the data
in the Command sequence

and process it

In case of
input of a

Command name,
process it

In case of
input of

Parameter A,
process it

In case of
input of

Parameter C,
process it

In case of
input of

Param. B,
process it

Output
Report

body

○ ○ ○○

*

Structure of Program Built with Conventional Non-Jackson Method
(by Shigo)

Input a datum

EOF ?

what input data?Command

First command?

no

For the previous command,
process the command
with the parameters

Command pre-process
and Parameter part

pre-process

Process
Parameter A

Parameter A

Process
Parameter B

Parameter B

Process
Parameter C

Parameter C yes

First command?

no

For the previous command,
process the command
with the parameters

yes

End

yes
no

(Loop)

Flowchart of Program Built with Conventional Non-Jackson Method

Input a datum

Parameter data ?

Input a datum

Process Parameter

yes

(Loop)

Process the Command
with the Parameter

no (in case of a next
command or EOF)

Input a datum

Command data ?

Command pre-process and
Parameter part pre-process

yes

no (in case of EOF)

End

(Loop)

Process a command

Flowchart of Program
Built with
the Jackson Method

Philosophy in the Jackson Method
(in SE) "to build a software module

so as to reflect the structure of its input and output"

"to build the structure of a technical system
so as to reflect the structures of the materials and information

which are to be handled with and produced by it"

Relevant to TRIZ principles, e.g.,
• 9-Windows method
• Asymmetry (Pr. #4)
• Flexible Shell and Membrane (Pr. #30)
• Parameter Change (Pr.#35)
• Composite Materials (Pr. #40)
• Selective Introduction of substances (Inventive Standards)
• Flexible Systems (Inventive Standards Da5)

(in TRIZ)

However, the matching in software technologies is better and deeper:

"to build a software module
so as to reflect the structure of its input and output"

Software:

Hardware:

Bank accounting
data

Bank accounting
procedure

Rocks and
strata

Drilling device
for civil engineering

Metal materials
and artifacts

Milling machine
for manufacturing

"to build the structure of a technical system
so as to reflect the structures of the materials and information

which are to be handled with and produced by it"

Desciplines concerning the inputs/outputs of a system
are often very different from that of the system itself. Difficulty

Feedbacks to TRIZ from the Jackson Method

We should pay more attention to
'the Objects we are going to handle with the System'
in contrast to 'the component Objects of (i.e. within) the System'.

Sub-principle "Introducing the Structures of Objects":
"The Objects to be processed by the technical system

should be examined closely in their structures,
especially from the aspects of spatial, temporal, causal,

and logical structures; and
the structues of the Objects should be introduced

in designing the structures of technical systems."

(This should be a sub-pinciple of
the Laws of Completeness of Technical Systems.)

(in TRIZ)

Concluding Remarks

The concept of Step-wise Refinement is important
in analyzing problems and in designing (software) systems.

The concept of data structures of inputs/outputs is useful
in designing the structure of processing systems.

These concepts in SE/CS are in harmony with TRIZ principles
and have been developed in a more detailed and logical way

than in TRIZ and hard-technologies.

TRIZ can learn a lot from basic concepts in SE/CS,
probably more than TRIZ can provide to SE/CS.

TRIZ has contributed in some extent to SE/CS, e.g.,
in the cases of 'Refinement in Another Dimension'

to make the Step-wise Refinement more flexible.

The present approach is slow but steady
to explore the ways of applying TRIZ to software development.

